Robustness and Linear Contracts

Gabriel Carroll (Working Paper, Dec 2012) summary by N. Antić

A principal contracts with an agent, who affects the principal's payoff by taking a costly, private action. Both paries are risk-neutral.

Basic Model

- $\blacksquare \text{ Set of output values } Y \subset \mathbb{R} \text{ is compact and } \min(Y) = 0$
- An *action* is $(F, c) \in \Delta(Y) \times \mathbb{R}_+$; a *technology* is a set of actions available to the agent, $\mathcal{A} \subset \Delta(Y) \times \mathbb{R}_+$, assumed to be compact
 - The agent knows \mathcal{A} , but the principal knows some $\mathcal{A}_0 \subset \mathcal{A}$
 - (A1) Assume principal knows there are benefits from contracting, i.e., $\exists (F, c) \in \mathcal{A}_0$ for which $\mathbb{E}_F[y] - c > 0$
 - The principal believes \mathcal{A} can be any superset of \mathcal{A}_0
 - Assume $(\delta_0, 0) \in \mathcal{A}_0$, i.e., agent can always do nothing
 - \mathcal{A}_0 has full support if $\forall (F,c) \in \mathcal{A}_0 \smallsetminus (\delta_0,0), supp (F) = Y$
- A contract is $w: Y \to \mathbb{R}_+$, w cts (limited liability assumption)
 - Let w_{α} denote linear contracts, i.e., $w_{\alpha}(y) = \alpha y, \forall y \in Y$
- Timing of the game and payoffs are as follows:
 - 1. Principal offers contract w knowing \mathcal{A}_0
 - 2. Agent chooses action $(F, c) \in \mathcal{A}$
 - 3. Nature determines output $y \sim F$
 - 4. Payoffs are y w(y) for principal and w(y) c for agent
- Note that the agent chooses an action in the non-empty set:

$$A^{*}\left(w \mid \mathcal{A}\right) = \operatorname*{arg\,max}_{(F,c) \in \mathcal{A}} \left(\mathbb{E}_{F}\left[w\left(y\right)\right] - c\right)$$

- Let $V_A(w \mid \mathcal{A})$ be the value function of the above
- If $|A^*(w \mid \mathcal{A})| \neq 1$, agent maximizes principal's utility
- The principal is extremely ambiguity averse and maximizes:

$$V_{P}(w) = \inf_{\mathcal{A} \supset \mathcal{A}_{0}} V_{P}(w \mid \mathcal{A}) = \inf_{\mathcal{A} \supset \mathcal{A}_{0}} \left(\max_{(F,c) \in A^{*}(w \mid \mathcal{A})} \mathbb{E}_{F}[y - w(y)] \right)$$

- Note that the principal can guarantee himself a strictly positive payoff by using a linear contract w_{α} for some $\alpha \in [0, 1)$
 - Let $(\underline{F}, \underline{c})$ solve $\max_{(F', c') \in \mathcal{A}_0} \mathbb{E}_{F'} [\alpha y] c' = V_A (w_\alpha \mid \mathcal{A}_0)$
 - Note that $V_A(w_{\alpha} \mid \mathcal{A}_0) > 0$ for α close to 1 by A1
 - For any $\mathcal{A} \supset \mathcal{A}_0$, for any (F, c) the agent chooses we have $\alpha \mathbb{E}_F[y] \ge \alpha \mathbb{E}_F[y] c \ge \alpha \mathbb{E}_F[y] \underline{c} = V_A(w_\alpha \mid \mathcal{A}_0)$; thus:

$$V_p(w_{\alpha}) = (1 - \alpha) \mathbb{E}_F[y] \ge \frac{1 - \alpha}{\alpha} V_A(w_{\alpha} \mid \mathcal{A}_0) > 0 \quad (1)$$

- If $\exists (F,0) \in \mathcal{A}_0 \setminus (\delta_0,0), w_0$ can attain positive profits since $V_p(w_0) = \max_{(F,0)\in\mathcal{A}_0} \mathbb{E}_F[y] > 0$, if not then $V_p(w_0) = 0$
- **\blacksquare** Focus on contracts which perform better than w_0

Lemma. For any $w \neq w_0$ for which $V_P(w) \geq V_P(w_0)$ we have:

$$V_{P}(w) = \min_{\{F \in \Delta(Y)\}} \mathbb{E}_{F}[y - w(y)]$$
(2)
subject to $\mathbb{E}_{F}[w(y)] \ge V_{A}(w \mid \mathcal{A}_{0}).$

If $V_P(w) > 0$, the constraint binds for F attaining the minimum.

Proof. (\geq) For all $\mathcal{A} \supset \mathcal{A}_0$, any $(F, c) \in A^*(w \mid \mathcal{A})$ satisfies $\mathbb{E}_F[w(y)] \ge \mathbb{E}_F[w(y)] - c \ge V_A(w \mid \mathcal{A}_0).$

 (\leq) Let F be the argmin of problem 2 and consider two cases:

1: $supp(F) \not\subset arg \max_{y} w(y)$. Let $F'_{\varepsilon} \equiv (1-\varepsilon) F \oplus \varepsilon \delta_{y^*}$ for $y^* \in arg \max_{y} w(y)$, so that if $\mathcal{A} = \mathcal{A}_0 \cup (F'_{\varepsilon}, 0)$, $A^*(w \mid \mathcal{A}) = (F'_{\varepsilon}, 0)$ and $V_P(w) = (1-\varepsilon) \mathbb{E}_F [y-w(y)] + \varepsilon \mathbb{E}_F [y^* - w(y^*)]$. As $\varepsilon \to 0$, $V_P(w) \to \mathbb{E}_F [y-w(y)]$, and thus $V_P(w) \not\geq \mathbb{E}_F [y-w(y)]$.

2: $supp(F) \subset \arg\max_{y} w(y)$. If $\mathbb{E}_{F}[w(y)] > V_{A}(w \mid \mathcal{A}_{0})$, then for $\mathcal{A} = \mathcal{A}_{0} \cup (F, 0)$, $A^{*}(w \mid \mathcal{A}) = (F, 0)$ and $V_{P}(w) = \mathbb{E}_{F}[y - w(y)]$. If $\mathbb{E}_{F}[w(y)] = V_{A}(w \mid \mathcal{A}_{0}) = \max_{y} w(y)$, then $K \equiv \{(G, 0) \in \mathcal{A}_{0} : supp(G) \subset \arg\max_{y} w(y)\} \neq \emptyset$ and

$$V_P(w) \leq V_P(w \mid \mathcal{A}_0) = \max_{(G,0) \in K} \mathbb{E}_G[y] - \max_y w(y)$$

$$< \max_{(G,0) \in \mathcal{A}_0} \mathbb{E}_G[y] = V_P(w_0), \quad \Rightarrow \Leftarrow .$$

Now assume $V_P(w) > 0$ and let F be the argmin of 2. If $\mathbb{E}_F[w(y)] > V_A(w \mid \mathcal{A}_0)$ consider $F_{\varepsilon} \equiv (1-\varepsilon) F \oplus \varepsilon \delta_0$ for small ε so that $\mathbb{E}_{F_{\varepsilon}}[w(y)] > V_A(w \mid \mathcal{A}_0)$. Now $\mathbb{E}_{F_{\varepsilon}}[y-w(y)] = (1-\varepsilon) \mathbb{E}_F[y-w(y)] + \varepsilon (0-w(0)) < \mathbb{E}_F[y-w(y)], \Rightarrow \Leftarrow$. \Box

 $\forall \alpha > 0, \text{ if } V_P(w_\alpha) \ge V_P(w_0) \text{ and } V_P(w_\alpha) > 0 \text{ then } V_P(w_\alpha) = \frac{1-\alpha}{\alpha} V_A(w_\alpha \mid \mathcal{A}_0) = \max_{(F,c) \in \mathcal{A}_0} \left((1-\alpha) \mathbb{E}_F[y] - \frac{1-\alpha}{\alpha} c \right)$

Theorem. A linear contract, w_{α} for some α , maximizes V_P . If \mathcal{A}_0 has full support then every contract maximizing V_P is linear.

Proof. Take w s.t. $V_P(w) \ge V_P(w_0), V_P(w) > 0$ and find w_α s.t. $V_P(w_\alpha) \ge V_P(w)$. Let $S = \operatorname{conv} \{(w(y), y - w(y)) : y \in Y\},$ $T = \{(u, v) : u > V_A(w \mid \mathcal{A}_0), v < V_P(w)\}$ and note that by the lemma $S \cap T = \emptyset$. Thus $\exists [(\lambda, \mu) = \kappa] \equiv \{x \in \mathbb{R}^2 : x \cdot (\lambda, \mu) = \kappa\}$, a separating hyperplane which satisfies:

$$\lambda u + \mu v \le \kappa \quad \forall \, (u, v) \in S \tag{3}$$

$$\lambda u + \mu v \ge \kappa \quad \forall (u, v) \in T \tag{4}$$

with $\kappa \ge 0$, $\lambda > 0$, $\mu < 0$. This is illustrated below, with the line $\lambda u + \mu v = \kappa$ in green and $\{(w(y), y - w(y)) : y \in Y\}$ in red.

Let $\alpha \equiv \frac{-\mu}{\lambda - \mu} \in (0, 1)$. Note that w_{α} has the same incentives as the affine contract $w'(y) = w_{\alpha}(y) + \frac{\kappa}{\lambda - \mu} = \frac{\kappa - \mu y}{\lambda - \mu} \ge w(y)$ for all y, where the inequality follows by expression 3. Note that $V_P(w_{\alpha}) \ge V_P(w')$.

We are left to show $V_P(w') \geq V_P(w)$ and $V_P(w') > V_P(w)$ if \mathcal{A}_0 has full support. For any \mathcal{A} and any $(F,c) \in A^*(w' \mid \mathcal{A})$, $\mathbb{E}_F[w'(y)] \geq \mathbb{E}_F[w'(y)] - c = V_A(w' \mid \mathcal{A}_0) \geq V_A(w \mid \mathcal{A}_0)$. Now:

$$V_{P}(w' \mid \mathcal{A}) = \mathbb{E}_{F}[y - w'(y)] = \mathbb{E}_{F}\left[\frac{\lambda w'(y) - \kappa}{-\mu}\right]$$

$$\geq \frac{\lambda V_{A}(w' \mid \mathcal{A}_{0}) - \kappa}{-\mu} \geq \frac{\lambda V_{A}(w \mid \mathcal{A}_{0}) - \kappa}{-\mu}$$

$$= \frac{\lambda \mathbb{E}_{F^{*}}[w(y)] - \kappa}{-\mu} = \mathbb{E}_{F^{*}}[y - w(y)] = V_{P}(w),$$

where F^* is the argmin of problem 2 and thus the pair $(\mathbb{E}_{F^*}[w(y)], \mathbb{E}_{F^*}[y-w(y)]) \in \overline{S}, \overline{T}$, so that $\lambda \mathbb{E}_{F^*}[w(y)] + \mu \mathbb{E}_{F^*}[y-w(y)] = \kappa$. Thus $V_P(w') \ge V_P(w)$.

Now for any $(F,c) \in A^*$ $(w \mid \mathcal{A}_0) \not\supseteq \{(\delta_0, 0)\}$, if F has full support, then $\mathbb{E}_F[w'(y)] > \mathbb{E}_F[w(y)]$ unless w = w', i.e., $V_A(w' \mid \mathcal{A}_0) > V_A(w \mid \mathcal{A}_0)$; thus $V_P(w_\alpha) \ge V_P(w') > V_P(w)$.

■ The optimal contract is found by solving:

$$\max_{(F,c)\in\mathcal{A}_0,\ \alpha\in[0,1]}\left(1-\alpha\right)\mathbb{E}_F\left[y\right] - \frac{1-\alpha}{\alpha}c$$

• For any (F, c) choose $\alpha = \sqrt{\frac{c}{\mathbb{E}_F[y]}}$, thus solve:

$$\max_{(F,c)\in\mathcal{A}_{0}}\left(\sqrt{\mathbb{E}_{F}\left[y\right]}-\sqrt{c}\right)$$

Extensions

- The main result can be extended to more complicated settings:
 - Non-zero participation constraints for the agent
 - Somewhat more general assumptions about the principal's knowledge of \mathcal{A}
 - Lower-bounds on c which are functions of the expectation of F
 - $\circ\,$ Generalization to lower-bounds on c which depend on any moment of F
 - Risk-averse or risk-loving preferences, with contracts which are linear in utility
- Note that the lower bound on the principal's payoff when she knows \mathcal{A} is strictly above $V_P(w_{\alpha^*})$
 - Screening by asking the agents to report \mathcal{A} ?
- Interestingly, a menu of contracts, $\mathcal{W} = (w_{\mathcal{A}})$, does not beat a single (linear) contract if agent's IC needs to be satisfied:

$$V_A(w_{\mathcal{A}} \mid \mathcal{A}) \ge V_A(w_{\mathcal{A}'} \mid \mathcal{A}) \qquad \forall \mathcal{A}, \mathcal{A}' \supset \mathcal{A}_0 \tag{5}$$

• Principal's objective is $V_P(\mathcal{W}) = \inf_{\mathcal{A} \supset \mathcal{A}_0} V_P(w_\mathcal{A} \mid \mathcal{A})$

Theorem (3.3). For any $\mathcal{W} = (w_{\mathcal{A}}), V_{\mathcal{P}}(\mathcal{W}) \leq \max_{w} V_{\mathcal{P}}(w).$

Proof. Let $w^0 \in W$ be the contract chosen by the agent under technology \mathcal{A}_0 and assume by way of contradiction $V_P(w^0) < V_P(W)$. Then $\exists \mathcal{A}_1$ s.t. the agent chooses $(F_1, c_1) \notin \mathcal{A}_0$ given w^0 and $V_P(w^0 \mid \mathcal{A}_1) < V_P(W)$. WLOG let $\mathcal{A}_1 = (F_1, c_1) \cup \mathcal{A}_0$. Let $w^1 \in W$ be the contract chosen by agent under \mathcal{A}_1 . To see that $A^*(w^1 \mid \mathcal{A}_1) = \{(F_1, c_1)\}$ assume by way of contradiction $(F_0, c_0) \in \mathcal{A}_0$ is in $A^*(w^1 \mid \mathcal{A}_1)$, which by IC implies $V_A(w^1 \mid \mathcal{A}_1) \leq V_A(w^0 \mid \mathcal{A}_0)$, but $V_A(w^1 \mid \mathcal{A}_1) \geq V_A(w^0 \mid \mathcal{A}_1) > V_A(w^0 \mid \mathcal{A}_0)$, $\Rightarrow \Leftarrow$. Thus:

$$V_{P}(w^{1} | \mathcal{A}_{1}) = \mathbb{E}_{F_{1}}[y - w^{1}(y)]$$

$$= \mathbb{E}_{F_{1}}[y] - c_{1} - (\mathbb{E}_{F_{1}}[w^{1}(y)] - c_{1})$$

$$\leq \mathbb{E}_{F_{1}}[y] - c_{1} - (\mathbb{E}_{F_{1}}[w^{0}(y)] - c_{1})$$

$$= \mathbb{E}_{F_{1}}[y - w^{0}(y)] = V_{P}(w^{0} | \mathcal{A}_{1})$$

$$< V_{P}(\mathcal{W}),$$

which contradicts the definition of $V_P(\mathcal{W})$.

Although the principal's lower bound when she knows \mathcal{A} is higher, there are technology sets for which the linear contract w_{α^*} is optimal; this is shown in Appendix C of the paper

Jan 16, 2013 Applied Theory Working Group Discussion

Attendees: Sylvain Chassang, Stephen Morris, Ben Brooks, Konstantinos Kalfarentzos, Kai Steverson, Olivier Darmouni, Dan Zeltzer, Nemanja Antić

- Main result could have a more "constructive" proof, although the trick of using the separating hyperplane theorem is particularly useful when proving extensions
- Extension to risk-aversion is somewhat uninteresting as contracts are linear in utility, which is not typically observed
- Extension to other knowledge assumptions is not so general principal needs to be very uncertain about at least one action; if there are many possible actions each of which the principal is not too uncertain about the result fails
- Some economic insight may be found in the optimal linear contract if more structure is imposed
- It is unclear that the limited liability assumption has its usual bite in this setting, since the two "normalizations" of min (Y) = 0 and non-negative payments rely on the same zero and thus agent is unable to destroy value
- Sylvain commented that theorem 3.3 can be generalized; a statement and proof follow some definitions
 - A simple lottery over contracts is $L = \{(p_1, w^1), ..., (p_n, w^n)\}$ with $\sum_{i=1}^n p_i = 1$
 - The timing is such that the lottery is resolved only after the agent takes an action
 - A menu of simple lotteries is $\overline{W} = (L_{\mathcal{A}})_{\mathcal{A} \supset \mathcal{A}_0}$
 - $V_P(\overline{\mathcal{W}}) = \inf_{\mathcal{A} \supset \mathcal{A}_0} \sum_{(p_i, w^i) \in L_A} p_i V_P(w^i \mid \mathcal{A})$

Theorem. For any $\overline{W} = (L_{\mathcal{A}})_{\mathcal{A} \supset \mathcal{A}_0}, V_P(\overline{W}) \leq \max_w V_P(w).$

Proof. Let $L \in \overline{W}$ be the lottery chosen by the agent under \mathcal{A}_0 and $w^L = \sum_{i=1}^n p_i w^i$; w^L is clearly a contract. Assume by way of contradiction $V_P(w^L) < V_P(\overline{W})$.

Note that $V_P(w^L) = V_P(\overline{W} \mid \mathcal{A}_0)$, since the agent is risk-neutral and hence $V_A(L \mid \mathcal{A}_0) = V_A(w^L \mid \mathcal{A}_0)$. Thus there must be some \mathcal{A}_1 s.t. the agent chooses $(F_1, c_1) \notin \mathcal{A}_0$ given w^L and $V_P(w^L \mid \mathcal{A}_1) < V_P(\overline{W})$. WLOG let $\mathcal{A}_1 = (F_1, c_1) \cup \mathcal{A}_0$. Note that $V_A(L \mid \mathcal{A}_1) = V_A(w^L \mid \mathcal{A}_1) > V_A(w^L \mid \mathcal{A}_0) = V_A(L \mid \mathcal{A}_0)$, since the inequality follows by the argument in theorem 3.3 in the paper.

Let $\overline{L} = \{(\overline{p}_1, \overline{w}^1), ..., (\overline{p}_n, \overline{w}^n)\}$ be chosen by the agent under \mathcal{A}_1 . To see that $A^*(\overline{L} \mid \mathcal{A}_1) = \{(F_1, c_1)\}$ assume $(F_0, c_0) \in \mathcal{A}_0$ is in $A^*(\overline{L} \mid \mathcal{A}_1)$, which by IC implies $V_A(\overline{L} \mid \mathcal{A}_1) \leq V_A(L \mid \mathcal{A}_0)$, but $V_A(\overline{L} \mid \mathcal{A}_1) \geq V_A(L \mid \mathcal{A}_1) > V_A(L \mid \mathcal{A}_0)$, $\Rightarrow \Leftarrow$. Thus:

$$V_{P}\left(\overline{L} \mid \mathcal{A}_{1}\right) = \mathbb{E}_{F_{1}}\left[y - \sum_{i=1}^{n} \overline{p}_{i} \overline{w}^{i}\left(y\right)\right]$$

$$= \mathbb{E}_{F_{1}}\left[y\right] - c_{1} - \left(\mathbb{E}_{F_{1}}\left[\sum_{i=1}^{n} \overline{p}_{i} \overline{w}^{i}\left(y\right)\right] - c_{1}\right)$$

$$\leq \mathbb{E}_{F_{1}}\left[y\right] - c_{1} - \left(\mathbb{E}_{F_{1}}\left[\sum_{i=1}^{n} p_{i} w^{i}\left(y\right)\right] - c_{1}\right)$$

$$= \mathbb{E}_{F_{1}}\left[y - w^{L}\left(y\right)\right] = V_{P}\left(w^{L} \mid \mathcal{A}_{1}\right) < V_{P}\left(\overline{\mathcal{W}}\right),$$

but principal must get $V_P(\overline{\mathcal{W}})$ on any $\mathcal{A}_0, \Rightarrow \Leftarrow$.

- Extension to general lotteries should be straightforward
- Timing does not matter—if lottery is drawn prior to the agent choosing an action, the principal does weakly worse:

$$\inf_{\mathcal{A}\supset\mathcal{A}_{0}}\sum_{(p_{i},w^{i})}p_{i}V_{P}\left(w^{i}\mid\mathcal{A}\right)\geq\sum_{(p_{i},w^{i})}p_{i}\left[\inf_{\mathcal{A}\supset\mathcal{A}_{0}}V_{P}\left(w^{i}\mid\mathcal{A}\right)\right]$$

 \blacksquare The above may not be true if principal is Bayesian about \mathcal{A}_0