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A principal contracts with an agent, who a¤ects the principal�s
payo¤by taking a costly, private action. Both paries are risk-neutral.

Basic Model

� Set of output values Y � R is compact and min (Y ) = 0

� An action is (F; c) 2 �(Y )�R+; a technology is a set of actions
available to the agent, A � �(Y )�R+, assumed to be compact

� The agent knows A, but the principal knows some A0 � A
(A1) Assume principal knows there are bene�ts from contract-

ing, i.e., 9 (F; c) 2 A0 for which EF [y]� c > 0
� The principal believes A can be any superset of A0
� Assume (�0; 0) 2 A0, i.e., agent can always do nothing
� A0 has full support if 8 (F; c) 2 A0r (�0; 0), supp (F ) = Y

� A contract is w : Y ! R+, w cts (limited liability assumption)

� Let w� denote linear contracts, i.e., w� (y) = �y, 8y 2 Y

� Timing of the game and payo¤s are as follows:

1. Principal o¤ers contract w knowing A0
2. Agent chooses action (F; c) 2 A
3. Nature determines output y � F
4. Payo¤s are y � w (y) for principal and w (y)� c for agent

� Note that the agent chooses an action in the non-empty set:

A� (w j A) = argmax
(F;c)2A

(EF [w (y)]� c)

� Let VA (w j A) be the value function of the above
� If jA� (w j A)j 6= 1, agent maximizes principal�s utility

� The principal is extremely ambiguity averse and maximizes:

VP (w) = inf
A�A0

VP (w j A) = inf
A�A0

�
max

(F;c)2A�(wjA)
EF [y � w (y)]

�
� Note that the principal can guarantee himself a strictly positive
payo¤ by using a linear contract w� for some � 2 [0; 1)

� Let (F ; c) solve max(F 0;c0)2A0
EF 0 [�y]� c0 = VA (w� j A0)

� Note that VA (w� j A0) > 0 for � close to 1 by A1
� For any A � A0, for any (F; c) the agent chooses we have
�EF [y] � �EF [y]� c � �EF [y]� c = VA (w� j A0); thus:

Vp (w�) = (1� �)EF [y] �
1� �
�

VA (w� j A0) > 0 (1)

� If 9 (F; 0) 2 A0 r (�0; 0), w0 can attain positive pro�ts since
Vp (w0) = max(F;0)2A0

EF [y] > 0, if not then Vp (w0) = 0

� Focus on contracts which perform better than w0

Lemma. For any w 6= w0 for which VP (w) � VP (w0) we have:

VP (w) = min
fF2�(Y )g

EF [y � w (y)] (2)

subject to EF [w (y)] � VA (w j A0) .

If VP (w) > 0, the constraint binds for F attaining the minimum.

Proof. (�) For all A � A0, any (F; c) 2 A� (w j A) satis�es
EF [w (y)] � EF [w (y)]� c � VA (w j A0).
(�) Let F be the argmin of problem 2 and consider two cases:
1: supp (F ) 6� argmaxy w (y). Let F 0" � (1� ")F � "�y� for

y� 2 argmaxy w (y), so that if A = A0[(F 0"; 0), A� (w j A) = (F 0"; 0)
and VP (w) = (1� ")EF [y � w (y)] + "EF [y� � w (y�)]. As " ! 0,
VP (w)! EF [y � w (y)], and thus VP (w) � EF [y � w (y)].
2: supp (F ) � argmaxy w (y). If EF [w (y)] > VA (w j A0),

then for A = A0 [ (F; 0), A� (w j A) = (F; 0) and VP (w) =
EF [y � w (y)]. If EF [w (y)] = VA (w j A0) = maxy w (y), then
K � f(G; 0) 2 A0 : supp (G) � argmaxy w (y)g 6= ; and

VP (w) � VP (w j A0) = max(G;0)2K EG [y]�max
y
w (y)

< max(G;0)2A0
EG [y] = VP (w0) ; )( .

Now assume VP (w) > 0 and let F be the argmin of 2. If
EF [w (y)] > VA (w j A0) consider F" � (1� ")F � "�0 for small
" so that EF" [w (y)] > VA (w j A0). Now EF" [y � w (y)] =
(1� ")EF [y � w (y)] + " (0� w (0)) < EF [y � w (y)], )(.

� 8� > 0, if VP (w�) � VP (w0) and VP (w�) > 0 then VP (w�) =
1��
� VA (w� j A0) = max(F;c)2A0

�
(1� �)EF [y]� 1��

� c
�

Theorem. A linear contract, w� for some �, maximizes VP . If A0
has full support then every contract maximizing VP is linear.

Proof. Take w s.t. VP (w) � VP (w0), VP (w) > 0 and �nd w�
s.t. VP (w�) � VP (w). Let S = conv f(w (y) ; y � w (y)) : y 2 Y g,
T = f(u; v) : u > VA (w j A0) ; v < VP (w)g and note that by the
lemma S \ T = ;. Thus 9 [(�; �) = �] �

�
x 2 R2 : x � (�; �) = �

	
, a

separating hyperplane which satis�es:

�u+ �v � � 8 (u; v) 2 S (3)

�u+ �v � � 8 (u; v) 2 T (4)

with � � 0, � > 0, � < 0. This is illustrated below, with the line
�u+ �v = � in green and f(w (y) ; y � w (y)) : y 2 Y g in red.
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Let � � ��
��� 2 (0; 1). Note that w� has the same incentives as the

a¢ ne contract w0 (y) = w� (y)+ �
��� =

���y
��� � w (y) for all y, where

the inequality follows by expression 3. Note that VP (w�) � VP (w0).
We are left to show VP (w

0) � VP (w) and VP (w0) > VP (w)
if A0 has full support. For any A and any (F; c) 2 A� (w0 j A),
EF [w0 (y)] � EF [w0 (y)]� c = VA (w0 j A0) � VA (w j A0). Now:

VP (w
0 j A) = EF [y � w0 (y)] = EF

�
�w0 (y)� �

��

�
� �VA (w

0 j A0)� �
�� � �VA (w j A0)� �

��

=
�EF� [w (y)]� �

�� = EF� [y � w (y)] = VP (w) ,

1



where F � is the argmin of problem 2 and thus the pair
(EF� [w (y)] ;EF� [y � w (y)]) 2 S; T , so that �EF� [w (y)] +
�EF� [y � w (y)] = �. Thus VP (w0) � VP (w).
Now for any (F; c) 2 A� (w j A0) 6� f(�0; 0)g, if F has full support,

then EF [w0 (y)] > EF [w (y)] unless w = w0, i.e., VA (w0 j A0) >
VA (w j A0); thus VP (w�) � VP (w0) > VP (w).

� The optimal contract is found by solving:

max
(F;c)2A0, �2[0;1]

(1� �)EF [y]�
1� �
�

c

� For any (F; c) choose � =
q

c
EF [y] , thus solve:

max
(F;c)2A0

�p
EF [y]�

p
c
�2

Extensions

� The main result can be extended to more complicated settings:

� Non-zero participation constraints for the agent
� Somewhat more general assumptions about the principal�s
knowledge of A

� Lower-bounds on c which are functions of the expectation
of F

� Generalization to lower-bounds on c which depend on
any moment of F

� Risk-averse or risk-loving preferences, with contracts which
are linear in utility

� Note that the lower bound on the principal�s payo¤ when she
knows A is strictly above VP (w��)

� Screening by asking the agents to report A?

� Interestingly, a menu of contracts, W = (wA), does not beat a
single (linear) contract if agent�s IC needs to be satis�ed:

VA (wA j A) � VA (wA0 j A) 8A,A0 � A0 (5)

� Principal�s objective is VP (W) = infA�A0 VP (wA j A)

Theorem (3.3). For any W = (wA), VP (W) � maxw VP (w).

Proof. Let w0 2 W be the contract chosen by the agent under tech-
nology A0 and assume by way of contradiction VP

�
w0
�
< VP (W).

Then 9A1 s.t. the agent chooses (F1; c1) =2 A0 given w0 and
VP
�
w0 j A1

�
< VP (W). WLOG let A1 = (F1; c1) [ A0. Let

w1 2 W be the contract chosen by agent under A1. To see
that A�

�
w1 j A1

�
= f(F1; c1)g assume by way of contradiction

(F0;c0) 2 A0 is in A�
�
w1 j A1

�
, which by IC implies VA

�
w1 j A1

�
�

VA
�
w0 j A0

�
, but VA

�
w1 j A1

�
� VA

�
w0 j A1

�
> VA

�
w0 j A0

�
,

)(. Thus:

VP
�
w1 j A1

�
= EF1

�
y � w1 (y)

�
= EF1 [y]� c1 �

�
EF1

�
w1 (y)

�
� c1

�
� EF1 [y]� c1 �

�
EF1

�
w0 (y)

�
� c1

�
= EF1

�
y � w0 (y)

�
= VP

�
w0 j A1

�
< VP (W) ,

which contradicts the de�nition of VP (W).

� Although the principal�s lower bound when she knows A is
higher, there are technology sets for which the linear contract
w�� is optimal; this is shown in Appendix C of the paper
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� Main result could have a more "constructive" proof, although
the trick of using the separating hyperplane theorem is partic-
ularly useful when proving extensions

� Extension to risk-aversion is somewhat uninteresting as con-
tracts are linear in utility, which is not typically observed

� Extension to other knowledge assumptions is not so general�
principal needs to be very uncertain about at least one action;
if there are many possible actions each of which the principal is
not too uncertain about the result fails

� Some economic insight may be found in the optimal linear con-
tract if more structure is imposed

� It is unclear that the limited liability assumption has its usual
bite in this setting, since the two "normalizations" of min (Y ) =
0 and non-negative payments rely on the same zero and thus
agent is unable to destroy value

� Sylvain commented that theorem 3.3 can be generalized; a state-
ment and proof follow some de�nitions

� A simple lottery over contracts is L =��
p1; w

1
�
; :::; (pn; w

n)
	
with

Pn
i=1 pi = 1

� The timing is such that the lottery is resolved only after
the agent takes an action

� A menu of simple lotteries is W = (LA)A�A0

� VP
�
W
�
= infA�A0

P
(pi;wi)2LA piVP

�
wi j A

�
Theorem. For any W = (LA)A�A0

, VP
�
W
�
� maxw VP (w).

Proof. Let L 2 W be the lottery chosen by the agent under A0
and wL =

Pn
i=1 piw

i; wL is clearly a contract. Assume by way of
contradiction VP

�
wL
�
< VP

�
W
�
.

Note that VP
�
wL
�
= VP

�
W j A0

�
, since the agent is risk-neutral

and hence VA (L j A0) = VA
�
wL j A0

�
. Thus there must be some A1

s.t. the agent chooses (F1; c1) =2 A0 given wL and VP
�
wL j A1

�
<

VP
�
W
�
. WLOG let A1 = (F1; c1) [ A0. Note that VA (L j A1) =

VA
�
wL j A1

�
> VA

�
wL j A0

�
= VA (L j A0), since the inequality

follows by the argument in theorem 3.3 in the paper.
Let L =

��
p1; w

1
�
; :::; (pn; w

n)
	
be chosen by the agent under

A1. To see that A�
�
L j A1

�
= f(F1; c1)g assume (F0;c0) 2 A0 is

in A�
�
L j A1

�
, which by IC implies VA

�
L j A1

�
� VA (L j A0), but

VA
�
L j A1

�
� VA (L j A1) > VA (L j A0), )(. Thus:

VP
�
L j A1

�
= EF1

�
y �

Pn
i=1 piw

i (y)
�

= EF1 [y]� c1 �
�
EF1

�Pn
i=1 piw

i (y)
�
� c1

�
� EF1 [y]� c1 �

�
EF1

�Pn
i=1 piw

i (y)
�
� c1

�
= EF1

�
y � wL (y)

�
= VP

�
wL j A1

�
< VP

�
W
�
,

but principal must get VP
�
W
�
on any A0, )(.

� Extension to general lotteries should be straightforward

� Timing does not matter� if lottery is drawn prior to the agent
choosing an action, the principal does weakly worse:

inf
A�A0

X
(pi;wi)

piVP
�
wi j A

�
�

X
(pi;wi)

pi

�
inf

A�A0

VP
�
wi j A

��

� The above may not be true if principal is Bayesian about A0
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