Robustness and Linear Contracts

Gabriel Carroll (Working Paper, Dec 2012)
A principal contracts with an agent, who affects the principal's payoff by taking a costly, private action. Both paries are risk-neutral.

Basic Model

■ Set of output values $Y \subset \mathbb{R}$ is compact and $\min (Y)=0$
■ An action is $(F, c) \in \Delta(Y) \times \mathbb{R}_{+} ;$a technology is a set of actions available to the agent, $\mathcal{A} \subset \Delta(Y) \times \mathbb{R}_{+}$, assumed to be compact

- The agent knows \mathcal{A}, but the principal knows some $\mathcal{A}_{0} \subset \mathcal{A}$
(A1) Assume principal knows there are benefits from contracting, i.e., $\exists(F, c) \in \mathcal{A}_{0}$ for which $\mathbb{E}_{F}[y]-c>0$
- The principal believes \mathcal{A} can be any superset of \mathcal{A}_{0}
- Assume $\left(\delta_{0}, 0\right) \in \mathcal{A}_{0}$, i.e., agent can always do nothing
- \mathcal{A}_{0} has full support if $\forall(F, c) \in \mathcal{A}_{0} \backslash\left(\delta_{0}, 0\right)$, $\operatorname{supp}(F)=Y$

■ A contract is $w: Y \rightarrow \mathbb{R}_{+}, w$ cts (limited liability assumption)

- Let w_{α} denote linear contracts, i.e., $w_{\alpha}(y)=\alpha y, \forall y \in Y$

■ Timing of the game and payoffs are as follows:

1. Principal offers contract w knowing \mathcal{A}_{0}
2. Agent chooses action $(F, c) \in \mathcal{A}$
3. Nature determines output $y \sim F$
4. Payoffs are $y-w(y)$ for principal and $w(y)-c$ for agent

■ Note that the agent chooses an action in the non-empty set:

$$
A^{*}(w \mid \mathcal{A})=\underset{(F, c) \in \mathcal{A}}{\arg \max }\left(\mathbb{E}_{F}[w(y)]-c\right)
$$

- Let $V_{A}(w \mid \mathcal{A})$ be the value function of the above
- If $\left|A^{*}(w \mid \mathcal{A})\right| \neq 1$, agent maximizes principal's utility
- The principal is extremely ambiguity averse and maximizes:

$$
V_{P}(w)=\inf _{\mathcal{A} \mathcal{A}_{0}} V_{P}(w \mid \mathcal{A})=\inf _{\mathcal{A} \supset \mathcal{A}_{0}}\left(\max _{(F, c) \in \mathcal{A}^{*}(w \mid \mathcal{A})} \mathbb{E}_{F}[y-w(y)]\right)
$$

■ Note that the principal can guarantee himself a strictly positive payoff by using a linear contract w_{α} for some $\alpha \in[0,1)$

- Let $(\underline{F}, \underline{c})$ solve $\max _{\left(F^{\prime}, c^{\prime}\right) \in \mathcal{A}_{0}} \mathbb{E}_{F^{\prime}}[\alpha y]-c^{\prime}=V_{A}\left(w_{\alpha} \mid \mathcal{A}_{0}\right)$
- Note that $V_{A}\left(w_{\alpha} \mid \mathcal{A}_{0}\right)>0$ for α close to 1 by A1
- For any $\mathcal{A} \supset \mathcal{A}_{0}$, for any (F, c) the agent chooses we have $\alpha \mathbb{E}_{F}[y] \geq \alpha \mathbb{E}_{F}[y]-c \geq \alpha \mathbb{E}_{\underline{F}}[y]-\underline{c}=V_{A}\left(w_{\alpha} \mid \mathcal{A}_{0}\right) ;$ thus:

$$
\begin{equation*}
V_{p}\left(w_{\alpha}\right)=(1-\alpha) \mathbb{E}_{F}[y] \geq \frac{1-\alpha}{\alpha} V_{A}\left(w_{\alpha} \mid \mathcal{A}_{0}\right)>0 \tag{1}
\end{equation*}
$$

- If $\exists(F, 0) \in \mathcal{A}_{0} \backslash\left(\delta_{0}, 0\right)$, w_{0} can attain positive profits since $V_{p}\left(w_{0}\right)=\max _{(F, 0) \in \mathcal{A}_{0}} \mathbb{E}_{F}[y]>0$, if not then $V_{p}\left(w_{0}\right)=0$
- Focus on contracts which perform better than w_{0}

Lemma. For any $w \neq w_{0}$ for which $V_{P}(w) \geq V_{P}\left(w_{0}\right)$ we have:

$$
\begin{align*}
V_{P}(w)= & \min _{\{F \in \Delta(Y)\}} \mathbb{E}_{F}[y-w(y)] \tag{2}\\
& \text { subject to } \mathbb{E}_{F}[w(y)] \geq V_{A}\left(w \mid \mathcal{A}_{0}\right) .
\end{align*}
$$

If $V_{P}(w)>0$, the constraint binds for F attaining the minimum.

Proof. (\geq) For all $\mathcal{A} \supset \mathcal{A}_{0}$, any $(F, c) \in A^{*}(w \mid \mathcal{A})$ satisfies $\mathbb{E}_{F}[w(y)] \geq \mathbb{E}_{F}[w(y)]-c \geq V_{A}\left(w \mid \mathcal{A}_{0}\right)$.
(\leq) Let F be the argmin of problem 2 and consider two cases:
1: $\operatorname{supp}(F) \not \subset \arg \max _{y} w(y)$. Let $F_{\varepsilon}^{\prime} \equiv(1-\varepsilon) F \oplus \varepsilon \delta_{y^{*}}$ for $y^{*} \in \arg \max _{y} w(y)$, so that if $\mathcal{A}=\mathcal{A}_{0} \cup\left(F_{\varepsilon}^{\prime}, 0\right), A^{*}(w \mid \mathcal{A})=\left(F_{\varepsilon}^{\prime}, 0\right)$ and $V_{P}(w)=(1-\varepsilon) \mathbb{E}_{F}[y-w(y)]+\varepsilon \mathbb{E}_{F}\left[y^{*}-w\left(y^{*}\right)\right]$. As $\varepsilon \rightarrow 0$, $V_{P}(w) \rightarrow \mathbb{E}_{F}[y-w(y)]$, and thus $V_{P}(w) \ngtr \mathbb{E}_{F}[y-w(y)]$.
2: $\operatorname{supp}(F) \subset \arg \max _{y} w(y)$. If $\mathbb{E}_{F}[w(y)]>V_{A}\left(w \mid \mathcal{A}_{0}\right)$, then for $\mathcal{A}=\mathcal{A}_{0} \cup(F, 0), A^{*}(w \mid \mathcal{A})=(F, 0)$ and $V_{P}(w)=$ $\mathbb{E}_{F}[y-w(y)]$. If $\mathbb{E}_{F}[w(y)]=V_{A}\left(w \mid \mathcal{A}_{0}\right)=\max _{y} w(y)$, then $K \equiv\left\{(G, 0) \in \mathcal{A}_{0}: \operatorname{supp}(G) \subset \arg \max _{y} w(y)\right\} \neq \emptyset$ and

$$
\begin{aligned}
V_{P}(w) & \leq V_{P}\left(w \mid \mathcal{A}_{0}\right)=\max _{(G, 0) \in K} \mathbb{E}_{G}[y]-\max _{y} w(y) \\
& <\max _{(G, 0) \in \mathcal{A}_{0}} \mathbb{E}_{G}[y]=V_{P}\left(w_{0}\right), \quad \Rightarrow \Leftarrow
\end{aligned}
$$

Now assume $V_{P}(w)>0$ and let F be the argmin of 2. If $\mathbb{E}_{F}[w(y)]>V_{A}\left(w \mid \mathcal{A}_{0}\right)$ consider $F_{\varepsilon} \equiv(1-\varepsilon) F \oplus \varepsilon \delta_{0}$ for small ε so that $\mathbb{E}_{F_{\varepsilon}}[w(y)]>V_{A}\left(w \mid \mathcal{A}_{0}\right)$. Now $\mathbb{E}_{F_{\varepsilon}}[y-w(y)]=$ $(1-\varepsilon) \mathbb{E}_{F}[y-w(y)]+\varepsilon(0-w(0))<\mathbb{E}_{F}[y-w(y)], \Rightarrow \Leftarrow$.

■ $\forall \alpha>0$, if $V_{P}\left(w_{\alpha}\right) \geq V_{P}\left(w_{0}\right)$ and $V_{P}\left(w_{\alpha}\right)>0$ then $V_{P}\left(w_{\alpha}\right)=$ $\frac{1-\alpha}{\alpha} V_{A}\left(w_{\alpha} \mid \mathcal{A}_{0}\right)=\max _{(F, c) \in \mathcal{A}_{0}}\left((1-\alpha) \mathbb{E}_{F}[y]-\frac{1-\alpha}{\alpha} c\right)$

Theorem. A linear contract, w_{α} for some α, maximizes V_{P}. If \mathcal{A}_{0} has full support then every contract maximizing V_{P} is linear.

Proof. Take w s.t. $V_{P}(w) \geq V_{P}\left(w_{0}\right), V_{P}(w)>0$ and find w_{α} s.t. $V_{P}\left(w_{\alpha}\right) \geq V_{P}(w)$. Let $S=\operatorname{conv}\{(w(y), y-w(y)): y \in Y\}$, $T=\left\{(u, v): u>V_{A}\left(w \mid \mathcal{A}_{0}\right), v<V_{P}(w)\right\}$ and note that by the lemma $S \cap T=\emptyset$. Thus $\exists[(\lambda, \mu)=\kappa] \equiv\left\{x \in \mathbb{R}^{2}: x \cdot(\lambda, \mu)=\kappa\right\}$, a separating hyperplane which satisfies:

$$
\begin{array}{ll}
\lambda u+\mu v \leq \kappa & \forall(u, v) \in S \\
\lambda u+\mu v \geq \kappa & \forall(u, v) \in T \tag{4}
\end{array}
$$

with $\kappa \geq 0, \lambda>0, \mu<0$. This is illustrated below, with the line $\lambda u+\mu v=\kappa$ in green and $\{(w(y), y-w(y)): y \in Y\}$ in red.

Let $\alpha \equiv \frac{-\mu}{\lambda-\mu} \in(0,1)$. Note that w_{α} has the same incentives as the affine contract $w^{\prime}(y)=w_{\alpha}(y)+\frac{\kappa}{\lambda-\mu}=\frac{\kappa-\mu y}{\lambda-\mu} \geq w(y)$ for all y, where the inequality follows by expression 3 . Note that $V_{P}\left(w_{\alpha}\right) \geq V_{P}\left(w^{\prime}\right)$.

We are left to show $V_{P}\left(w^{\prime}\right) \geq V_{P}(w)$ and $V_{P}\left(w^{\prime}\right)>V_{P}(w)$ if \mathcal{A}_{0} has full support. For any \mathcal{A} and any $(F, c) \in A^{*}\left(w^{\prime} \mid \mathcal{A}\right)$, $\mathbb{E}_{F}\left[w^{\prime}(y)\right] \geq \mathbb{E}_{F}\left[w^{\prime}(y)\right]-c=V_{A}\left(w^{\prime} \mid \mathcal{A}_{0}\right) \geq V_{A}\left(w \mid \mathcal{A}_{0}\right)$. Now:

$$
\begin{aligned}
V_{P}\left(w^{\prime} \mid \mathcal{A}\right) & =\mathbb{E}_{F}\left[y-w^{\prime}(y)\right]=\mathbb{E}_{F}\left[\frac{\lambda w^{\prime}(y)-\kappa}{-\mu}\right] \\
& \geq \frac{\lambda V_{A}\left(w^{\prime} \mid \mathcal{A}_{0}\right)-\kappa}{-\mu} \geq \frac{\lambda V_{A}\left(w \mid \mathcal{A}_{0}\right)-\kappa}{-\mu} \\
& =\frac{\lambda \mathbb{E}_{F^{*}}[w(y)]-\kappa}{-\mu}=\mathbb{E}_{F^{*}}[y-w(y)]=V_{P}(w),
\end{aligned}
$$

where F^{*} is the argmin of problem 2 and thus the pair $\left(\mathbb{E}_{F^{*}}[w(y)], \mathbb{E}_{F^{*}}[y-w(y)]\right) \in \bar{S}, \bar{T}, \quad$ so that $\lambda \mathbb{E}_{F^{*}}[w(y)]+$ $\mu \mathbb{E}_{F^{*}}[y-w(y)]=\kappa$. Thus $V_{P}\left(w^{\prime}\right) \geq V_{P}(w)$.
Now for any $(F, c) \in A^{*}\left(w \mid \mathcal{A}_{0}\right) \not \supset\left\{\left(\delta_{0}, 0\right)\right\}$, if F has full support, then $\mathbb{E}_{F}\left[w^{\prime}(y)\right]>\mathbb{E}_{F}[w(y)]$ unless $w=w^{\prime}$, i.e., $V_{A}\left(w^{\prime} \mid \mathcal{A}_{0}\right)>$ $V_{A}\left(w \mid \mathcal{A}_{0}\right)$; thus $V_{P}\left(w_{\alpha}\right) \geq V_{P}\left(w^{\prime}\right)>V_{P}(w)$.

- The optimal contract is found by solving:

$$
\max _{(F, c) \in \mathcal{A}_{0}, \alpha \in[0,1]}(1-\alpha) \mathbb{E}_{F}[y]-\frac{1-\alpha}{\alpha} c
$$

- For any (F, c) choose $\alpha=\sqrt{\frac{c}{\mathbb{E}_{F}[y]}}$, thus solve:

$$
\max _{(F, c) \in \mathcal{A}_{0}}\left(\sqrt{\mathbb{E}_{F}[y]}-\sqrt{c}\right)^{2}
$$

Extensions

- The main result can be extended to more complicated settings:
- Non-zero participation constraints for the agent
- Somewhat more general assumptions about the principal's knowledge of \mathcal{A}
- Lower-bounds on c which are functions of the expectation of F
- Generalization to lower-bounds on c which depend on any moment of F
- Risk-averse or risk-loving preferences, with contracts which are linear in utility
- Note that the lower bound on the principal's payoff when she knows \mathcal{A} is strictly above $V_{P}\left(w_{\alpha^{*}}\right)$
- Screening by asking the agents to report \mathcal{A} ?

■ Interestingly, a menu of contracts, $\mathcal{W}=\left(w_{\mathcal{A}}\right)$, does not beat a single (linear) contract if agent's IC needs to be satisfied:

$$
\begin{equation*}
V_{A}\left(w_{\mathcal{A}} \mid \mathcal{A}\right) \geq V_{A}\left(w_{\mathcal{A}^{\prime}} \mid \mathcal{A}\right) \quad \forall \mathcal{A}, \mathcal{A}^{\prime} \supset \mathcal{A}_{0} \tag{5}
\end{equation*}
$$

- Principal's objective is $V_{P}(\mathcal{W})=\inf _{\mathcal{A} \supset \mathcal{A}_{0}} V_{P}\left(w_{\mathcal{A}} \mid \mathcal{A}\right)$

Theorem (3.3). For any $\mathcal{W}=\left(w_{\mathcal{A}}\right), V_{P}(\mathcal{W}) \leq \max _{w} V_{P}(w)$.
Proof. Let $w^{0} \in \mathcal{W}$ be the contract chosen by the agent under technology \mathcal{A}_{0} and assume by way of contradiction $V_{P}\left(w^{0}\right)<V_{P}(\mathcal{W})$. Then $\exists \mathcal{A}_{1}$ s.t. the agent chooses $\left(F_{1}, c_{1}\right) \notin \mathcal{A}_{0}$ given w^{0} and $V_{P}\left(w^{0} \mid \mathcal{A}_{1}\right)<V_{P}(\mathcal{W})$. WLOG let $\mathcal{A}_{1}=\left(F_{1}, c_{1}\right) \cup \mathcal{A}_{0}$. Let $w^{1} \in \mathcal{W}$ be the contract chosen by agent under \mathcal{A}_{1}. To see that $A^{*}\left(w^{1} \mid \mathcal{A}_{1}\right)=\left\{\left(F_{1}, c_{1}\right)\right\}$ assume by way of contradiction $\left(F_{0}, c_{0}\right) \in \mathcal{A}_{0}$ is in $A^{*}\left(w^{1} \mid \mathcal{A}_{1}\right)$, which by IC implies $V_{A}\left(w^{1} \mid \mathcal{A}_{1}\right) \leq$ $V_{A}\left(w^{0} \mid \mathcal{A}_{0}\right)$, but $V_{A}\left(w^{1} \mid \mathcal{A}_{1}\right) \geq V_{A}\left(w^{0} \mid \mathcal{A}_{1}\right)>V_{A}\left(w^{0} \mid \mathcal{A}_{0}\right)$, $\Rightarrow \Leftarrow$. Thus:

$$
\begin{aligned}
V_{P}\left(w^{1} \mid \mathcal{A}_{1}\right) & =\mathbb{E}_{F_{1}}\left[y-w^{1}(y)\right] \\
& =\mathbb{E}_{F_{1}}[y]-c_{1}-\left(\mathbb{E}_{F_{1}}\left[w^{1}(y)\right]-c_{1}\right) \\
& \leq \mathbb{E}_{F_{1}}[y]-c_{1}-\left(\mathbb{E}_{F_{1}}\left[w^{0}(y)\right]-c_{1}\right) \\
& =\mathbb{E}_{F_{1}}\left[y-w^{0}(y)\right]=V_{P}\left(w^{0} \mid \mathcal{A}_{1}\right) \\
& <V_{P}(\mathcal{W}),
\end{aligned}
$$

which contradicts the definition of $V_{P}(\mathcal{W})$.
Although the principal's lower bound when she knows \mathcal{A} is higher, there are technology sets for which the linear contract $w_{\alpha^{*}}$ is optimal; this is shown in Appendix C of the paper

Jan 16, 2013 Applied Theory Working Group Discussion
Attendees: Sylvain Chassang, Stephen Morris, Ben Brooks, Konstantinos Kalfarentzos, Kai Steverson, Olivier Darmouni, Dan Zeltzer, Nemanja Antić

■ Main result could have a more "constructive" proof, although the trick of using the separating hyperplane theorem is particularly useful when proving extensions

- Extension to risk-aversion is somewhat uninteresting as contracts are linear in utility, which is not typically observed
■ Extension to other knowledge assumptions is not so generalprincipal needs to be very uncertain about at least one action; if there are many possible actions each of which the principal is not too uncertain about the result fails
■ Some economic insight may be found in the optimal linear contract if more structure is imposed

■ It is unclear that the limited liability assumption has its usual bite in this setting, since the two "normalizations" of $\min (Y)=$ 0 and non-negative payments rely on the same zero and thus agent is unable to destroy value
■ Sylvain commented that theorem 3.3 can be generalized; a statement and proof follow some definitions

- A simple lottery over contracts is $L=$ $\left\{\left(p_{1}, w^{1}\right), \ldots,\left(p_{n}, w^{n}\right)\right\}$ with $\sum_{i=1}^{n} p_{i}=1$
- The timing is such that the lottery is resolved only after the agent takes an action
- A menu of simple lotteries is $\overline{\mathcal{W}}=\left(L_{\mathcal{A}}\right)_{\mathcal{A} \supset \mathcal{A}_{0}}$
- $V_{P}(\overline{\mathcal{W}})=\inf _{\mathcal{A} \supset \mathcal{A}_{0}} \sum_{\left(p_{i}, w^{i}\right) \in L_{\mathcal{A}}} p_{i} V_{P}\left(w^{i} \mid \mathcal{A}\right)$

Theorem. For any $\overline{\mathcal{W}}=\left(L_{\mathcal{A}}\right)_{\mathcal{A} \supset \mathcal{A}_{0}}, V_{P}(\overline{\mathcal{W}}) \leq \max _{w} V_{P}(w)$.
Proof. Let $L \in \overline{\mathcal{W}}$ be the lottery chosen by the agent under \mathcal{A}_{0} and $w^{L}=\sum_{i=1}^{n} p_{i} w^{i} ; w^{L}$ is clearly a contract. Assume by way of contradiction $V_{P}\left(w^{L}\right)<V_{P}(\overline{\mathcal{W}})$.

Note that $V_{P}\left(w^{L}\right)=V_{P}\left(\overline{\mathcal{W}} \mid \mathcal{A}_{0}\right)$, since the agent is risk-neutral and hence $V_{A}\left(L \mid \mathcal{A}_{0}\right)=V_{A}\left(w^{L} \mid \mathcal{A}_{0}\right)$. Thus there must be some \mathcal{A}_{1} s.t. the agent chooses $\left(F_{1}, c_{1}\right) \notin \mathcal{A}_{0}$ given w^{L} and $V_{P}\left(w^{L} \mid \mathcal{A}_{1}\right)<$ $V_{P}(\overline{\mathcal{W}})$. WLOG let $\mathcal{A}_{1}=\left(F_{1}, c_{1}\right) \cup \mathcal{A}_{0}$. Note that $V_{A}\left(L \mid \mathcal{A}_{1}\right)=$ $V_{A}\left(w^{L} \mid \mathcal{A}_{1}\right)>V_{A}\left(w^{L} \mid \mathcal{A}_{0}\right)=V_{A}\left(L \mid \mathcal{A}_{0}\right)$, since the inequality follows by the argument in theorem 3.3 in the paper.
Let $\bar{L}=\left\{\left(\bar{p}_{1}, \bar{w}^{1}\right), \ldots,\left(\bar{p}_{n}, \bar{w}^{n}\right)\right\}$ be chosen by the agent under \mathcal{A}_{1}. To see that $A^{*}\left(\bar{L} \mid \mathcal{A}_{1}\right)=\left\{\left(F_{1}, c_{1}\right)\right\}$ assume $\left(F_{0}, c_{0}\right) \in \mathcal{A}_{0}$ is in $A^{*}\left(\bar{L} \mid \mathcal{A}_{1}\right)$, which by IC implies $V_{A}\left(\bar{L} \mid \mathcal{A}_{1}\right) \leq V_{A}\left(L \mid \mathcal{A}_{0}\right)$, but $V_{A}\left(\bar{L} \mid \mathcal{A}_{1}\right) \geq V_{A}\left(L \mid \mathcal{A}_{1}\right)>V_{A}\left(L \mid \mathcal{A}_{0}\right), \Rightarrow \Leftarrow$. Thus:

$$
\begin{aligned}
V_{P}\left(\bar{L} \mid \mathcal{A}_{1}\right) & =\mathbb{E}_{F_{1}}\left[y-\sum_{i=1}^{n} \bar{p}_{i} \bar{w}^{i}(y)\right] \\
& =\mathbb{E}_{F_{1}}[y]-c_{1}-\left(\mathbb{E}_{F_{1}}\left[\sum_{i=1}^{n} \bar{p}_{i} \bar{w}^{i}(y)\right]-c_{1}\right) \\
& \leq \mathbb{E}_{F_{1}}[y]-c_{1}-\left(\mathbb{E}_{F_{1}}\left[\sum_{i=1}^{n} p_{i} w^{i}(y)\right]-c_{1}\right) \\
& =\mathbb{E}_{F_{1}}\left[y-w^{L}(y)\right]=V_{P}\left(w^{L} \mid \mathcal{A}_{1}\right)<V_{P}(\overline{\mathcal{W}}),
\end{aligned}
$$

but principal must get $V_{P}(\overline{\mathcal{W}})$ on any $\mathcal{A}_{0}, \Rightarrow \Leftarrow$.

■ Extension to general lotteries should be straightforward

- Timing does not matter - if lottery is drawn prior to the agent choosing an action, the principal does weakly worse:

$$
\inf _{\mathcal{A} \supset \mathcal{A}_{0}} \sum_{\left(p_{i}, w^{i}\right)} p_{i} V_{P}\left(w^{i} \mid \mathcal{A}\right) \geq \sum_{\left(p_{i}, w^{i}\right)} p_{i}\left[\inf _{\mathcal{A} \supset \mathcal{A}_{0}} V_{P}\left(w^{i} \mid \mathcal{A}\right)\right]
$$

The above may not be true if principal is Bayesian about \mathcal{A}_{0}

