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summary by N. Antié

A principal contracts with an agent, who affects the principal’s
payoff by taking a costly, private action. Both paries are risk-neutral.

Basic Model

B Set of output values Y C R is compact and min (Y) =0

B An action is (F,c) € A(Y) xRy ; a technology is a set of actions
available to the agent, 4 C A (Y) xR, assumed to be compact
e The agent knows A, but the principal knows some Ay C A

(A1) Assume principal knows there are benefits from contract-
ing, i.e., 3(F,c) € A for which Ep [y] — ¢ >0

e The principal believes A can be any superset of Ag
e Assume (dp,0) € Ay, i.e., agent can always do nothing
o Ag has full support if ¥V (F,c) € Ag~ (d0,0), supp (F) =Y

A contract is w: Y — Ry, w cts (limited liability assumption)
e Let w, denote linear contracts, i.e., w, (y) = ay, Yy € Y
Timing of the game and payoffs are as follows:

1. Principal offers contract w knowing Ag

2. Agent chooses action (F,c) € A

3. Nature determines output y ~ F

4. Payoffs are y — w (y) for principal and w (y) — ¢ for agent

Note that the agent chooses an action in the non-empty set:

A (w | A) = argmax (B [w (1)) — o
(F,c)eA

e Let V4 (w | .A) be the value function of the above
o If |A* (w | A)| # 1, agent maximizes principal’s utility

The principal is extremely ambiguity averse and maximizes:

= inf
ADAp

max

<(F,c)eA*(wA)

Vo (w) = Br ly—w <y>1)

A1£1Jf40 Ve (w| A) =

Note that the principal can guarantee himself a strictly positive
payoff by using a linear contract w, for some « € [0, 1)

o Let (F,c) solve maxpr oryea, Bre [oy] — ¢ = Va (wa | Ao)
e Note that V4 (wq | Ao) > 0 for a close to 1 by Al

e For any A D Ay, for any (F,c) the agent chooses we have
aBp [y > aBr [y] — ¢ > aEF [y] — ¢ = Va (wy | Ap); thus:

1—

aaVA (wa | Ao) >0 (1)

Vo (wa) = (1 - a)Br[y] >

B If 3(F,0) € Ag ~ (09,0), wo can attain positive profits since
Vp (wo) = max(r0ye, Br [y] > 0, if not then V;, (wp) =0

B Focus on contracts which perform better than wg
Lemma. For any w # wq for which Vp (w) > Vp (wy) we have:

Vp (w)

min
{FeA)}

subject to Bp [w (y)] > Va (w | Ag) .

Er [y —w(y)] (2)

If Vp (w) > 0, the constraint binds for F attaining the minimum.

Proof. (>) For all A D Ay, any (F,c) € A*(w|.A) satisfies
Er [w(y)] = Ep [w(y)] —c > Va (w | Ao).

(<) Let F be the argmin of problem 2 and consider two cases:

1: supp(F) ¢ argmax,w(y). Let F. = (1—¢)F @ ey~ for
y* € argmax, w (y), so that if A = AyU(F.,0), A* (w | .A) = (FL,0)
and Vp (1) = (1- ) Ep [y — w (5)] + Br [y* - w (y")]. As e — 0,
Vp (w) = Ep [y — w (y)], and thus Vp (w) # Er [y — w (y)].

2: supp(F) C argmaxyw(y). If Eplw(y)] > Va(w]A),
then for A= A4y U (F,0), A*(w].A) (F,0) and Vp (w)
Erly—w(y)]. If Eplw(y)] = Va(w|Ay) = max,w(y), then
K ={(G,0) € Ap : supp (G) C argmax, w (y)} # 0 and

Ve (w) < Ve(w]|Ay)=maxg,oek Ba [y] — maxw (y)

y
< max(goyes, Be [y] = VP (wo), =<«

Now assume Vp(w) > 0 and let F' be the argmin of 2. If
Ep|w(y)] > Va(w]|.Ag) consider F, = (1 —¢)F @ edg for small
e so that Ep [w(y)] > Va(w]|Ay). Now Ep [y—w(y)] =
(- ) By —w() +0-w(0) <Eply-wp), 2« O

B Va >0, if Vp (wa) > Ve (wo) and Vp (wy) > 0 then Vp (w,)
22V (wa | Ao) = max(peyea, (1 — @) Er [y — 52%¢)

Theorem. A linear contract, w,, for some «, maximizes Vp. If Ag
has full support then every contract mazimizing Vp is linear.

Proof. Take w s.t. Vp(w) > Vp(wg), Vp(w) > 0 and find w,
s.t. Vp(wa) > Vp(w). Let S = conv{(w(y),y—w(y)):y €Y}
T = {(u,v) :u>Va(w]|A),v<Vp(w)} and note that by the
lemma SNT =0. Thus [\, p) =k] = {z € R?: - (\,u) =K}, a
separating hyperplane which satisfies:

M4 pv <k V(u,v) €S
A pw >k Y(uv)eT

3)
(4)

with kK > 0, A > 0, u < 0. This is illustrated below, with the line
A+ pv = k in green and {(w (y),y — w(y)) : y € Y} in red.
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Let oo = 5722 € (0,1). Note that wq has the same incentives as the
affine contract w’ (y) = wa (y)+ 52, = “A__‘Ly
the inequality follows by expression 3. Note that Vp (w,) > Vp (w').

We are left to show Vp (w') > Vp(w) and Vp (v’ Ve (w)
if Ay has full support. For any A and any (F,c) € A* (v’ | A),
Br [w' (y)] 2 Br [w' (y)] — ¢ = Va (0" | Ag) = Va (w [ Ag). Now:

2w’ (y) — k
Erly —w' (y)] = Er {(_y;}
AVy (w' | Ag) — K S AVa(w | Ag) — K
—p - —p
AEp« [w(y)] — K
F[_/S)] =Ep-[y—w(y)] =Vp(v),

> w (y) for all y, where

Vp (w' | A)




where F* is the argmin of problem 2 and thus the pair
Ep- [w@)],Br[y-—w)]) € ST, so that AEp-[w(y)] +
pEp« [y —w (y)] = k. Thus Vp (') > Vp (w).

Now for any (F,c) € A* (w | Ao) 2 {(d0,0)}, if F has full support,
then Ep [w' (y)] > Ep [w(y)] unless w = w', ie., Vy(w' | Ag) >
Va (w | Ag); thus Vp (wg) > Vp (w') > Vp (w). O

B The optimal contract is found by solving:

1—a
a. 1— E .
(F,C)erjlo,};e[o,u( a)Ep [y] —c
e For any (F,c) choose a = ﬁ[y]v thus solve:

max
(F,c)eAp

(VBT - ve)

Extensions
B The main result can be extended to more complicated settings:

e Non-zero participation constraints for the agent

e Somewhat more general assumptions about the principal’s
knowledge of A

e Lower-bounds on ¢ which are functions of the expectation
of F

o Generalization to lower-bounds on ¢ which depend on
any moment of F’

e Risk-averse or risk-loving preferences, with contracts which
are linear in utility

B Note that the lower bound on the principal’s payoff when she
knows A is strictly above Vp(wqx)

e Screening by asking the agents to report A7

B Interestingly, a menu of contracts, W = (w4), does not beat a
single (linear) contract if agent’s IC needs to be satisfied:

Va(wa | A) > Va(wa | A VAA D A (5)
e Principal’s objective is Vp (W) = inf y5.4, Vp (w4 | A)
Theorem (3.3). For any W = (wa), Vp (W) < max,, Vp (w).

Proof. Let w® € W be the contract chosen by the agent under tech-
nology Ay and assume by way of contradiction Vp (wo) < Vp(W).

Then 3A; s.t. the agent chooses (Fy,c1) ¢ A given w’ and
Vp (U)O ‘ ./41) < Vp (W) WLOG let .Al = (Fl,Cl) U ./40. Let
w! € W be the contract chosen by agent under A;. To see

that A* (w' | Ay) = {(Fi,c1)} assume by way of contradiction
(Fo,co) € Ag is in A* (w' | Ay), which by IC implies V4 (w' | A1) <
Va (wo | Ao), but Vju (wl |.A1) > Va (wo | A1) > Va (wo ‘ Ao),
=<=. Thus:

Vp (w' | A1) = Ep [y—w'(y)]
= Enlyl -~ (Br [w' ()] -a)
< Br [y —ca— (Br [0°@)] -a)
= Ep [y— v’ (y)] = Ve (0’ | A)
< Ve(W),
which contradicts the definition of Vp (W). O

B Although the principal’s lower bound when she knows A is
higher, there are technology sets for which the linear contract
W+ s optimal; this is shown in Appendix C of the paper
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B Main result could have a more "constructive" proof, although
the trick of using the separating hyperplane theorem is partic-
ularly useful when proving extensions

B Extension to risk-aversion is somewhat uninteresting as con-
tracts are linear in utility, which is not typically observed

B Extension to other knowledge assumptions is not so general—
principal needs to be very uncertain about at least one action;
if there are many possible actions each of which the principal is
not too uncertain about the result fails

B Some economic insight may be found in the optimal linear con-
tract if more structure is imposed

B [t is unclear that the limited liability assumption has its usual
bite in this setting, since the two "normalizations" of min (V') =
0 and non-negative payments rely on the same zero and thus
agent is unable to destroy value

B Sylvain commented that theorem 3.3 can be generalized; a state-
ment and proof follow some definitions

e A simple lottery over contracts is L =
{(p1,w"), ..y (P, w™) } with >0 p; =1

e The timing is such that the lottery is resolved only after
the agent takes an action

e A menu of simple lotteries is W = (L) 44,
Theorem. For any W = (LA)A3A07 Vp (W) < max,, Vp (w).

Proof. Let L € W be the lottery chosen by the agent under Ag
and w? = Y0 | pw'; wl is clearly a contract. Assume by way of
contradiction Vp (wL ) <Vp (W)

Note that Vp (wL) =Vp (W | Ao), since the agent is risk-neutral
and hence V4 (L | Ag) = Va (w” | Ap). Thus there must be some A,
s.t. the agent chooses (Fy,c1) ¢ Ap given w” and Vp (wh | A1) <
Vp (W) WLOG let A; = (Fl,cl) U Ag. Note that Vy (L | .Al) =
Va (wh | Ay) > Va (wh | Ag) = Va(L| Ap), since the inequality
follows by the argument in theorem 3.3 in the paper.

Let L = {(}71,@1) s ey (T)n,ﬁn)} be chosen by the agent under
A;. To see that A* (L | A1) = {(Fi,c1)} assume (Fyco) € Ao is
in A* (L | Ay), which by IC implies V4 (L | A1) < Va (L | Ap), but
Va (f ‘ A1) >Va (L | Al) > Vy (L | .A())7 =<«. Thus:

Ve (L| A1) = Bply—Yr 5w ()]
= EFI [y] —C — (EFI [Z?:] ﬁi@i (y)] - Cl)
< Brlyl—a — (Br X piw' ()] —a)
= Ep [y—w" )] =Ve (w" | 4) < Ve (W),
but principal must get Vp (W) on any Ag, =<. O

B Extension to general lotteries should be straightforward

B Timing does not matter—if lottery is drawn prior to the agent
choosing an action, the principal does weakly worse:

A%l.go ( Z,)pivp (wl | A) = Z bi l:Aiél.E‘o Ve (wi | A)
pi,w*

(pi,w?)

B The above may not be true if principal is Bayesian about Ag



